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» Modelica is a modeling language that is: 
˃ Vendor-neutral 

˃ Multi-domain 

˃ Object-oriented 

˃ Multi-formalism 

» Modelica is like LEGOs for building 
mathematical system models 
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Differentiation block 
 
 

Only 1 state (vs. 2 previously) 
 
 
 
 

 
No feedback loop 

 
 
 

 
 
 
 

Completely different model! 
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Block Diagrams Acausal Modeling 

» Textbook equations 
have to be constantly 
reformulated 
depending on context. 

» Different “blocks” with 
different combinations 
of inputs and outputs. 

» Tedious, time-
consuming and error 
prone. 

» Long-division 
 

» Textbook equations are 
captured in reusable 
object-oriented 
component models. 

» A single component for 
all causalities (e.g. 
planetary gear). 

» Fun, fast and 
automated (and 
efficient!) 

» Calculator 
 



» Natural way to describe physical behavior 
˃ Multi-body systems (joint constraints) 

˃ Fluid problems (ideal gas law) 

˃ Easy to express many important idealizations (stiff springs) 

» Difficult to solve in a purely numerical way 
˃ Consistent initial conditions 

˃ High index DAEs 

» Preferred solution methods: 
˃ Index reduction (Pantelides’ algorithm) 

˃ Dummy derivative method 

˃ Turn DAE into ODEs (or index-1 DAEs) 

 



 

 

 

» Attraction of modeling is the landscape of 
infinite possibilities it creates. 





» What were computers invented for? 

 

 

 

 

 

 

 

 

» Simulation is as old as computing itself. 

ENIAC (circa 1947-1955) 
 
“The Giant Brain” 
 
Artillery Firing Tables 



» Originally, solution schemes (integration) was 
integrated with problem: 

 

 

» Eventually, problem and solver were cleanly 
partitioned: 

 

 

» Performance: 
˃ (Cost of evaluation f)  (# of times f is evaluated) 

𝑥 𝑡 = 𝑓 𝑥, 𝑢, 𝑡 ; 𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑡𝑛 +
ℎ

2
, 𝑥𝑛 +

ℎ𝑓 𝑡𝑛, 𝑦𝑛
2

) 

V = V + A*dt; 

X = X + V*dt; 



» The Six Blind Men and The Elephant 



Query the underlying structure I give you a number, you give me a number. I give you MORE numbers, you give me MORE numbers. 

Don’t think of f as a black-box numerical function, 
think of it as a representation of your system 
that conveys a complete representation of 
your problem and then optimize it. 



» Umbrella topic for: 
˃ Equation sorting 

˃ Index reduction 

˃ State selection 

˃ Substitutions 

˃ Tearing 

» Goal is not a symbolic/analytical solution 

» Reduces the DAEs down to ODEs 
˃ More natural way to express behavior 

˃ Reuse established numerical solvers 

˃ Heavily optimize evaluation costs 

» Opinion: it will be impossible for purely numerical 
tools to compete. 

Requires structural information 
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Structure of Equations 
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» Functional Mockup Interface (FMI) 

» Initiated by Daimler as an industry wide and vendor 
neutral alternative to (MathWorks) S-functions. 

» Initially funded by EU.  Eventually became an 
official Modelica Association project. 

» A way to exchange compiled models 
˃ Not really a modeling technology 

˃ Limited “composability” 

» FMI 2.0-RC1 just released 
˃ Support for discrete states 

˃ Algebraic loops during events and initialization 



» Functional Mockup Unit – FMU 

» Pre-compiled collection of files: 
˃ Binaries (for various platforms) 

˃ Source code (in provided) 

˃ Resources (data files, etc) 

˃ Documentation 

˃ Model Description (XML file) 

» FMUs are instantiated 
˃ Potentially multiple instances in same simulation 

˃ Can be formulated for “Model Exchange” or “Co-simulation” 



» Reaching limitations of classic Von Neumann 
architecture (CPU+memory). 

» Multi-core machines and cloud computer 
resources are becoming increasingly common. 

» Simulation is typically heavily sequential 

» Exploiting future computing resources: 
˃ Thinking more about parallel computations 

˃ Loosely coupled analyses 

˃ Cheaper computing and timing driving analyses like optimization, 
monte-carlo and other parallelizable types of analysis 

˃ Model reduction could become more cost effective 



» Xogeny proprietary platform 

» Platform for running FMI compliant models “in 
the cloud” 

» Inspiration came from dynamic programming 
application where desktop resources weren’t 
sufficient. 

» Easy path to model reduction, Monte-Carlo 
analysis, etc. 

» Wraps analyses in data management 
framework for persisting input and output data. 





 

 

 

» Attraction of modeling is the landscape of 
infinite possibilities it creates. 



 

 

 

» Attraction of modeling is the landscape of 
infinite possibilities it creates. 

» “…characterized by anxiety in situations where 
the sufferer perceives certain environments as 
dangerous or uncomfortable, often due to the 
environment’s vast openness…” 





» It is worth the 
effort to organize 
features and 
capabilities around 
achieving a great 
user experience. 



» Important to understand the business questions 
that need answering. 
˃ Do you need one application or many? 

» Models are the “functions” to capture non-trivial 
relationships. 
˃ Can be recombined in different ways depending on the use case. 

» Applications need to provide a clear path from 
models to questions/solutions. 

» Software architectures often tend toward 
monolithic applications. 

» Xogeny applications heavily leverage declarative 
representations and code generation. 
˃ Don’t write applications, write programs that write applications. 







 











» Increasing pressure to connect CAD, CAE, 
requirements and system simulation. 

» Lots of compelling technologies out there that 
are not being leveraged. 
˃ Competitive advantage in breaking away from legacy and capitalizing 

on these opportunities. 

» Highlight the value of modeling by making it 
accessible to everybody. 

 

» Exciting time for system simulation… 






